Nanometric holograms based on a topological insulator material

نویسندگان

  • Zengji Yue
  • Gaolei Xue
  • Juan Liu
  • Yongtian Wang
  • Min Gu
چکیده

Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Disc Insulator Type and Corona Ring on Electric Field and Voltage Distribution over 230-kV Insulator String by Numerical Method

Insulator strings with several material and profiles are very common in overhead transmission lines. However, the electric field and voltage distribution of insulator string is uneven which may easily lead to corona, insulators’ surface deterioration and even flashover. So the calculation of the electric field and voltage distribution along them is a very important factor in the operation time....

متن کامل

Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se

Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by a metallic bulk conduction that overwhelms the surface transport. We show that the topological insulator Bi2Te2Se presents a high resistivity exceeding 1 cm and a variable-range hopping behavior, and yet presents Shubnikov-de Haas oscillations coming from ...

متن کامل

The d-p band-inversion topological insulator in bismuth-based skutterudites

Skutterudites, a class of materials with cage-like crystal structure which have received considerable research interest in recent years, are the breeding ground of several unusual phenomena such as heavy fermion superconductivity, exciton-mediated superconducting state and Weyl fermions. Here, we predict a new topological insulator in bismuth-based skutterudites, in which the bands involved in ...

متن کامل

High-Q optical resonators in silicon-on-insulator-based slot waveguides

This letter describes the design, fabrication and characterization of high-Q oval resonators based on slot waveguide geometries in thin silicon-on-insulator material. Optical quality factors of up to 27 000 were measured in such filters, and we estimate losses of 210 dB/cm in the slotted waveguides on the basis of our resonator measurements. Such waveguides enable the concentration of light to ...

متن کامل

Second Harmonic Generation Imaging of a Magnetic Topological Insulator

A topological insulator (TI) is a type of quantum material that is insulating in the bulk but metallic on the surface. Due to the unique spin properties of the surface electrons, TIs have attracted much interest for their potential applications in spin-based electronics and quantum computers. Even more exotic effects occur when TIs are brought in contact with magnetic materials. This thesis rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017